Part Number Hot Search : 
APL1117D HD74AL 105K1 0EPC27 COM0A1 03994 312010 SMA5J33A
Product Description
Full Text Search
 

To Download LF247N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LF147 - LF247 LF347
WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS
s LOW POWER CONSUMPTION s WIDE COMMON-MODE (UP TO VCC+) AND
DIFFERENTIAL VOLTAGE RANGE
s LOW INPUT BIAS AND OFFSET CURRENT s OUTPUT SHORT-CIRCUIT PROTECTION s HIGH INPUT IMPEDANCE J-FET INPUT
STAGE
N DIP14 (Plastic Package)
s INTERNAL FREQUENCY COMPENSATION s LATCH UP FREE OPERATION s HIGH SLEW RATE : 16V/s (typ)
D SO14 (Plastic Micropackage)
DESCRIPTION These circuits are high speed J-FET input quad operational amplifiers incorporating well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. PIN CONNECTIONS (top view)
ORDER CODE
Package Part Number Temperature Range N LF147 LF247 LF347 Example : LF347IN -55C, +125C -40C, +105C 0C, +70C * * * D * * *
N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT)
Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC + 4 Non-inverting Input 2 5 Inverting Input 2 6 Output 2 7 + + + +
14 Output 4 13 Inverting Input 4 12 Non-inverting Input 4 11 VCC 10 Non-inverting Input 3 9 8 Inverting Input 3 Output 3
March 2001
1/10
LF147 - LF247 - LF347
SCHEMATIC DIAGRAM (each amplifier)
VCC
Non-inverting input
Inverting input 100W 100 W
200 W Output
30k
8.2k
1.3k VCC
35k
1.3k
35k
100 W
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Vid Ptot Toper Tstg
1. 2. 3. 4.
Parameter Supply voltage - note 1) Input Voltage - note Power Dissipation Output Short-circuit Duration - note 4) Operating Free-air Temperature Range Storage Temperature Range
2) 3)
LF147
LF247
LF347
Unit V V V mW
18 15 30 680 Infinite -55 to +125 -40 to +105 -65 to +150 0 to +70
Differential Input Voltage - note
C C
All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded
2/10
LF147 - LF247 - LF347
ELECTRICAL CHARACTERISTICS VCC = 15V, Tamb = +25C (unless otherwise specified)
Symbol Vio DVio Iio Parameter Input Offset Voltage (Rs = 10k) Tamb = 25C Tmin Tamb Tmax Input Offset Voltage Drift Input Offset Current - note Tamb = 25C Tmin Tamb Tmax
1)
Min.
Typ. 3 10 5
Max. 10 13
Unit mV
V/C 100 4 200 20 pA nA pA nA V/mV
Iib
Input Bias Current - note 1 Tamb = 25C Tmin Tamb Tmax Large Signal Voltage Gain (RL = 2k, Vo = 10V) , Tamb = 25C Tmin Tamb Tmax Supply Voltage Rejection Ratio (RS = 10k) Tamb = 25C Tmin Tamb Tmax Supply Current, Per Amp, no Load Tamb = 25C Tmin Tamb Tmax Input Common Mode Voltage Range Common Mode Rejection Ratio (RS = 10k) Tamb = 25C Tmin Tamb Tmax Output Short-Circuit Current Tamb = 25C Tmin Tamb Tmax Output Voltage Swing Tamb = 25C RL = 2k RL = 10k RL = 2k RL = 10k 11 50 25 80 80
20
Avd
200 dB 86 mA 1.4 +15 -12 86 mA 2.7 2.7 V dB
SVR
ICC Vicm CMR
70 70 10 10 10 12 10 12 12
IOS
40
60 60 V
Vopp
Tmin Tamb Tmax
12 13.5
SR tr Kov GBP Ri
Slew Rate Vi = 10V, RL = 2k, CL = 100pF, Tamb = 25C, unity gain Rise Time Vi = 20mV, RL = 2k,CL = 100pF, Tamb = 25C, unity gain Overshoot Vi = 20mV, RL = 2k, CL = 100pF, Tamb = 25C, unity gain Gain Bandwidth Product f =100kHz, Tamb = 25C, Vin = 10mV, RL =2k, CL = 100pF Input Resistance
V/s 16 s 0.1 % 10 MHz 2.5 4 1012
%
THD
Total Harmonic Distortion f =1kHz, Av = 20dB, RL = 2k, CL = 100pF Tamb = 25C, VO = 2Vpp
Equivalent Input Noise Voltage (RS = 100, f = 1KHz)
0.01 15 45 120 nV ----------Hz Degrees dB
en
m Phase Margin Vo1/Vo2 Channel Separation ( Av = 100)
1.
The input bias currents are junction leakage currents which approximately double for every 10C increase in the junction temperature.
3/10
LF147 - LF247 - LF347
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREE AIR TEMP.
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus LOAD RESISTANCE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus SUPPLY VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V)
30 25
RL = 10 k Tamb = +25C
20
15 10
5
0 2 4 6 8 10 12 SUPPLY VOLTAGE ( V) 14 16
4/10
LF147 - LF247 - LF347
INPUT BIAS CURRENT versus FREE AIR TEMPERATURE LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY
100 V CC = INPUT BIAS CURRENT (nA) 10 1 0.1 15V
DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V)
1000 400 200 100 40 20 10 4 2 1 -75
V CC = 15V V O = 10V R L = 2k -50
0.01 -50
-25
0
25
50
75
100
125
-25
0
25
50
75
100
125
TEMPERATURE (C)
TEMPERATURE (C)
LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY
TOTAL POWER DISSIPATION versus FREE AIR TEMPERATURE
PHASE SHIFT (right scale)
DIFFERENTIAL VOLTAGE AMPLIFICATION (left scale)
180
10
1 100
R = 2kW L C L = 100pF V CC = 15V T amb = +125C
1K 10K 100K 1M 10M FREQUENCY (Hz)
90
0
TOTAL POWER DISSIPATION (mW)
100
250 225 200 175 150 125 100 75 50 25 0 -75 -50 -25 0 25 50 TEMPERATURE (C)
DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V)
V CC = 15V No signal No load
75
100
125
SUPPLY CURRENT PER AMPLIFIER versus FREE AIR TEMPERATURE
COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -75 -50 -25 0 25 50 TEMPERATURE (C)
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
V CC = 15V No signal No load
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0
T amb = +25C No signal No load
75
100
125
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
5/10
LF147 - LF247 - LF347
COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE
INPUT AND OUTPUT VOLTAGES (V)
89 COMMON MODE MODE REJECTION RATIO (dB) 88 87 86 85 84 83 -75 -50 -25 0 25 50 75 100 125
R L = 10 k VC C = 15V
6 4 2 0 -2 -4 -6 0
VCC= 15V R L = 2 kW
OUTPUT
INPUT
C L= 100pF Tamb = +25C
0.5
1
1.5
2
2.5
3
3.5
TEMPERATURE (C)
TIME (m s)
OUTPUT VOLTAGE versus ELAPSED TIME
EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY
28 24 OUTPUT VOLTAGE (mV)
OVERSHOOT
70 60
90%
20 16 12 8 4
10%
EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz)
50 40 30 20 10 0 10 40 100 400 1k
VCC = 15V A V = 10 R S = 100 T amb = +25C
V
0 -4 0
tr 0.1 0.2 0.3 0.4 TIME ( s)
R L = 2k Tamb = +25C 0.5 0.6 0.7
CC
= 15V
4k
10k
40k 100k
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION versus FREQUENCY
1 TOTAL HARMONIC DISTORTION (%) 0.4 0.1 0.04 0.01 0.004 0.001 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) V V = = 15V 15V CC CC 1 A A V= = 1 V V V O (rms) = 6V O (rms) = 6V T amb = = +25C T amb +25C
6/10
LF147 - LF247 - LF347
PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier
10k W
eI
1k W
1/4 LF347 eo
RL
CL= 100pF
TYPICAL APPLICATIONS AUDIO DISTRIBUTOR AMPLIFIER
fO = 100kHz 1M W 1m F Input 100k W 100m F 100k W 100k W 100k W 1/4 LF347 1/4 LF347 Output B 1/4 LF347 Output A
+ VCC
1/4 LF347 Output C
7/10
LF147 - LF247 - LF347
TYPICAL APPLICATIONS (continued) POSITIVE FEEDBACK BANDPASS FILTER
16k W 220pF 43k W Input 43k W 220pF 4/1 LF347 43k W 4/1 LF347 30k W 43k W 220pF 4/1 LF347 43k W 220pF
16k W
30k W 43k W 4/1 LF347 Output B
1.5k W
1.5k W
Ground Output A
OUTPUT A
OUTPUT B
SECOND ORDER BANDPASS FILTER fo = 100kHz; Q = 30; Gain = 16
CASCADED BANDPASS FILTER fo = 100kHz; Q = 69; Gain = 16
8/10
LF147 - LF247 - LF347
PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP
Millimeters Dim. Min. a1 B b b1 D E e e3 F i L Z 0.51 1.39 0.5 0.25 20 8.5 2.54 15.24 7.1 5.1 3.3 1.27 2.54 0.050 Typ. Max. 1.65 Min. 0.020 0.055
Inches Typ. Max. 0.065 0.020 0.010 0.787 0.335 0.100 0.600 0.280 0.201 0.130 0.100
9/10
LF147 - LF247 - LF347
PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO)
L C
G c1
a2 b e3 D M e
A
s E
14 1
8 7 F
Millimeters Dim. Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S 0.1 0.35 0.19 0.5 45 (typ.) 8.55 5.8 1.27 7.62 3.8 4.6 0.5 4.0 5.3 1.27 0.68 8 (max.) 0.150 0.181 0.020 8.75 6.2 0.336 0.228 Typ. Max. 1.75 0.2 1.6 0.46 0.25 Min. 0.004 0.014 0.007
a1
Inches Typ. Max. 0.069 0.008 0.063 0.018 0.010 0.020 0.344 0.244 0.050 0.300 0.157 0.208 0.050 0.027
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. (c) The ST logo is a registered trademark of STMicroelectronics (c) 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom (c) http://www.st.com
10/10
b1


▲Up To Search▲   

 
Price & Availability of LF247N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X